## **Short Research Article**

# Solid-phase synthesis of cyclic imines — potential for radiolabelling $^\dagger$

## CAROLYN A. AUSTIN<sup>1</sup>, DAVID SMITH<sup>2</sup> and RICHARD C. HARTLEY<sup>1,\*</sup>

<sup>1</sup>WestCHEM Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK

 $Received\ 23\ August\ 2006;\ Revised\ 15\ December\ 2006;\ Accepted\ 15\ December\ 2006$ 

Keywords: solid phase synthesis; radiochemistry; organotitanium; Schrock carbene

## Introduction

Solid supports may be useful as a means of localizing radioactivity, particularly if the final radiolabelled compounds are released in high purity upon cleavage from resin. Recently, we have developed a method by which simple resin-bound esters can be converted into a range of bioactive heterocycles (benzofurans, 1.2 indoles, 2 benzothiophenes, 3 and quinolines 4) using titanium alkylidene reagents 5 1 (Figure 1), which are Schrock carbenes. The heterocycles are produced in very high purity and require no chromatography and a radiolabel could potentially be incorporated into the

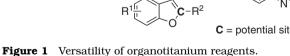
target heterocycles at C-2 if a radiolabelled carboxylic acid is used.

#### Results and discussion

Radiochemical labelling of piperidine alkaloids and related compounds is of interest because of the range of biological activities that such compounds can have.

Indeed the piperidine alkaloids  $\gamma$ -coniceine **2** and (*S*)-coniine **3** were responsible for the toxic effects of the cup of hemlock used to execute the ancient Greek philosopher Socrates (Figure 2).<sup>6</sup> Furthermore, the

$$R^{1} \stackrel{\text{if}}{=} C - R^{2}$$


$$R^{3}$$

$$R^{1} \stackrel{\text{if}}{=} C - R^{2}$$

$$R^{1} \stackrel{\text{if}}{=} C - R^{2}$$

$$R^{1} \stackrel{\text{if}}{=} C - R^{2}$$

$$C = \text{potential site of } C = C = C$$



 $R^{1} \stackrel{\text{TiCp}_2}{\stackrel{\text{II}}{\text{II}}} NuPG$   $Nu = O, S, NR^3$   $R^1 = OR, NR_2, F, SR, B(OR)_2$ 

\*Correspondence to: Richard C. Hartley, WestCHEM Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.

E-mail: richh@chem.gla.ac.uk

Contract/grant sponsor: Sanofi-Aventis Contract/grant sponsor: University of Glasgow

<sup>T</sup>Proceedings of the Ninth International Symposium on the Synthesis and Applications of Isotopically Labelled Compounds, Edinburgh, 16–20 July 2006.



<sup>&</sup>lt;sup>2</sup> Alnwich Research Centre, Sanofi-Aventis, Willowburn Avenue, Alnwick NE66 2JH, UK

Figure 2 Piperidine alkaloids from hemlock.

3 eq. SPh
PhS 4
NHCPh<sub>3</sub>

4 12 eq. 
$$Cp_2Ti[P(OEt)_3]_2$$
, THF
NHCPh<sub>3</sub>

3 eq.
$$Cp_2Ti \longrightarrow NHCPh_3$$
7
C = potential site of <sup>14</sup>C label
$$C = potential Site of 14C label$$

$$R \longrightarrow NaOH_{(aq)}$$
9 46-87%
$$R \longrightarrow NaOH_{(aq)}$$
R \( \text{C} \)
NaOH\_{(aq)}

R \( \text{C} \)
NBOH\_{(aq)}

R \( \text{C} \)
NHCPh<sub>3</sub>

7

8
CF<sub>3</sub>CO<sub>2</sub>\( \text{C} \)
NHCPh<sub>3</sub>

7

C \( \text{C} \)
NAOH\_{(aq)}

R \( \text{C} \)
NBOH\_{(aq)}

CF<sub>3</sub>CO<sub>2</sub>\( \text{C} \)
NBOH\_{(aq)}

#### Scheme 1

drug Ritalin that treats attention-deficit-hyperactivity-disorder<sup>7</sup> and the insect repellent Bayrepel<sup>8</sup> also contain a 2-substituted piperidine core. Therefore, we devised a route for the synthesis of 6-membered and 7-membered cyclic imines from resin-bound esters. In the six membered-ring series,<sup>9</sup> titanium alkylidene **5** was generated from thioacetal **4** and used to convert esters **6** into enol ethers **7**, which were cleaved with acid and the resulting ketones **8** cyclized in base to give imines in good purity and respectable yield (Scheme 1).

## **Acknowledgements**

Sanofi-Aventis and University of Glasgow for funding.

### **REFERENCES**

1. McKiernan GJ, Hartley RC. *Org Lett* 2003; **5**: 4389–4392.

- Macleod C, McKiernan GJ, Guthrie EJ, Farrugia LJ, Hamprecht DW, Macritchie J, Hartley RC. J Org Chem 2003; 68: 387-401.
- 3. Roberts CF, Hartley RC. *J Org Chem* 2004; **69**: 6145–6148.
- 4. Macleod C, Austin CA, Hamprecht DW, Hartley RC. *Tetrahedron Lett* 2004; **45**: 8879–8882.
- 5. Hartley RC, McKiernan GJ. J Chem Soc Perkin Trans 1 2002; 2763–2793.
- Reynolds T. Phytochemistry 2005; 66: 1399– 1406.
- 7. Gilman V. Chem Eng News 2005; 83(25): 108.
- 8. Badolo A, Ilboudo-Sanogo E, Ouedraogo AP, Constantini C. *Trop Med Int Health* 2004; **9**: 330–334.
- 9. Adriaenssens LV, Austin CA, Gibson M, Smith D, Hartley RC. Eur J Org Chem 2006; 4998–5001.